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Application to rigid-plastic bodies of a model of an elastoplastic medium with yield 
delay @ag],proposed earlier&+ discussed. Statically determinate and ~determinate sys- 
terns are studied. A detailed solution of the problem of dynamic bending of a circular, 

freely supported plate is given. 

When the concept of a rigid-plastic body is used as the basis for investigating the 

dynamic problems of the theory of plasticity, it is assumed that the stress distribution in 
the parts which remain rigid during the motion of the body cannot, in principle, be deter- 
mined since this follows from the definition of a perfectly rigid body. In fact, when we 
consider e. g* the motion of a beam with stationary yield stresses (flow hinges), the posi- 

tion of these hinges is determined by the condition of the bending moments at these hm- 
ges due to the external load and inertial forces retain their maximum values, and this 

implies that plastic hinges cannot appear at the rigid segments. The effect of yield delay 

characteristic for low-C steels consists of the fact that the material can be subjected 

and can withstand stresses appreciably in excess of the static yield stress for a certain 

time, and this is the yield delay time. 
A model of an elastoplastic medium with yield delay is discussed in [l - 31, while 

[4] also deals with the model of a rigid-plastic body with yield delay as applied to the 

problem of dynamic bending of a beam. 
Here the first plastic; hinge appears at the cross section at which some functional rea- 

ches its maximum during the first stage of motion when the hinges have yet to form. 

If the beam is statically determinate, then this cross section is unique. 
In the case of systems of rods or plates which are statically indeterm~at~, the distri- 

bution of moments in the rigid state can only be obtained by making certain assumptions 

about the nature of the rigid regions. For this reason,the model of a rigid-plastic body 

with yield delay needs to be made more precise. 

We shall consider the rigid-plastic body as an elastic body with an infinitely large 
Young% modulus. The stress dis~ibution in such a body under the action of static and 
quasistatic loads can be defined uniquely, since when the forces are given, the stresses 

at the surface are independent of Young’s modulus. 

1. Confining our attention to beams and plates, we obtain a model of a rigid-plastic 
plate with yield delay as follows. In the rigid parts of the plate the distribution of mo- 
ments is given by the solution of the dynamic problem of the theory of elasticity, in 
which the value of the Young’s modulus has been made infinite. If the static condition 
of plasticity has the form M,=MS 

where MT, is the equivalent moment (e. g. according to the von Mises or Tresca yield 
condition) and the condition 
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(1.1) 

where cp(M,) is a known delay function and a is a material constant, holds at some 
t = t, on the line y or in the region S , then for r ,‘. to 

,!I, GM, (I .3) 
on y or in S , 
The conditions (1.1) and (1.2) remain valid for a beam provided that M,denotes the 

absolute value of the bending moment. 
Conditions (1.1) and (1.2) are constructed 

under the usual (for the rigid-plastic approach) 

assumption that the condition of plasticity 
for the moments has the same form as the 

condition of plasticity for the stresses arising 
in the state of plane stress. This conclusion 

is strictly accurate for a perfect H-beam and 

for a two-layer plate. In the case of a real 

beam or a plate the plastic region spreads 

across its thickness gradually, as shown in 

jJ] ; we shall not, however, consider this aspect 

23 30 3s W 5LJ f5 in the present paper. 

Fig. 1 
The function cp appearing under the inte- 

gral sign in the aelay condition (1.1) is deter- 
mined experimentally. In the case of extension-compression along a single axis, it can 
be written in the form [5] cp = (o / a*)a (1.3) 
where a is the material constant and o*denotes a certain characteristic stress. 

In many problems however, the expression for cp in the form 

$)= ( Z;? ‘i” (1.4) 

where n is the material constant and oS denotes the static yield point, is found more 

suitable. 

Figure 1 depicts the experimental data of Wood and Clark [6] obtained for the time 
delay versus the applied load, and the curves 1 and 2 which were computed according 

to (1.3) and (1.4), respectively. 
It may be assumed that in the case of a rigid-plastic bending of beams and plates the 

function cp will have the same form as that for extension-compression along a single 
axis. The following expression is used in the present paper 

(1.5) 

Here MSdenotes the limiting value of the bending moment. 

Equation (1.1) expresses the hypothesis of isotropic delay. In fact, it appears feasible 
that the release of dislocations caused by the stress acting in a single direction does not 
alleviate their movement in the opposite direction n]. When applied to a beam, the 
above statement implies the following. If the bending moment changes its sign, then 
(1.1) must be computed separately for the positive and for the negative values of the 
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moment. 

Attaining the maximum value by one of these integrals determines the onset of flow. 
Thus a more precise form of the condition of delay for a beam is given by 

f f 

max 
I! 

q(IMI)dt* cp(JMI)signMdt = 22 
s 

0 0 

(1.6) 

This condition will also be perfectly valid for a plate, with the Tresca-type criterion 
adopted, provided that M is understood to denote h!f,, or M,, or M, - M,. 

2. To perform the computations according to the scheme adopted, in which the rigid 
regions are treated as the limiting cases ( E = co ) of elastic regions, the distribution 
of moments in the rigid regions must first be determined. It will be shown that this dis- 

tribution corresponds to the quasistatic solution, i.e. to the solution obtained when the 

inertial forces are neglected. Let us consider the dynamic bending of a plate under the 
load Q(S, t) when the boundary conditions are homogeneous. The load function 4(x, t) 
is assumed to be integrable (in quadratures) in 5 and continuous in t together with its 
first order derivative . We impose on it the following restrictions: 

‘I(“,O) = 0, laq/at 1 +d, la2qia~2~ ~72’ (2.U 

where m’and 12’ are arbitrarily small. We obtain the solution of the differential equation 

of bending E A(w) $ p d?w/dP = q (2.2) 
as an expansion in terms of the eigenfunctions of 

A(w) = lw 
Using the initial conditions 

U’(5, 0) = 0, (dw/dt)t+, = 0 

we obtain by the usual methods 

IC=~~~U~, ~ii=~~~inor(l-S)Vh(S)dS 
k 0 

where qk(t) are the Fourier coefficients of the load 4. From (2.1) follows 

qk(0) = 0, 1 qk 1 < my I ii I< n (2.3) 
where m and n are quantities proportional to m’and n’ and vanishing with the latter. 
Integrating the expression for ‘tk twice by parts and taking the initial condition into 

account we obtain 
1 

rk = EL, 
[! sin o (t - s) q” (s) ds]} 
0 

The expression contained within the square brackets remains bounded for any finite 1. 
When E + co, wk + 00. The bending moments are given as products of the second 

order derivatives of the deflection w multiplied by E. When E = 00 . we have 

E (2.4) 

This corresponds to the quasistatic solution obtained by neglecting the inertial forces. 
Series (2.4) are guaranteed to converge at least in the mean. 

The quantities m’ and n’ can now be made arbitrarily small. This means that con- 
straints imposed on the mode of variation of q(s, t) vanish with time. The order in 
which the passage to the limit is achieved is important; E tends to infinity first and is 
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then followed by m’ and n’ tending to zero. 
Clearly, a similar method can be applied to beams (where the uniform convergence 

of (2.4) can be easily shown) and to other elastic systems. 

If it is assumed that q and dq 1 at treated as functions of t can exhibit discontinuities 
from the initial instant up to the time when E --, w, then a situation may arise which 
shall be illustrated with the case of longitudinal oscillations of a rod, 

We assume that a stress ciO is momentarily applied to one end of the rod, the other end 
remaining free. As the waves reflect from the free end, the stress assumes at every cross 

section a value equal either to zero or to s,,, and its mean value over a sufficiently long 

interval of time tends to a,( I - z) / 1. 

This is in fact the stress distribution obtained by solving the quasistatic problem when 
the load applied at the end is equalized by the inertial forces uniformly distributed over 

the whole length. If now E -+ ix7 and consequently the velocity of propagation of the 

elastic waves also tends to infinity, the result given above retains its validity. The quan- 
tity 6 (z, t) however does not tend to any limit when 5 and t are fixed. At the same 

time the Fourier coefficients of G (5, t) tend to the Fourier ooefflcients ofthecontinuous 

function co (1 - z) I 1 as E tends to infinity. For fixed x we have 
f 

Thus the time delay can be obtained from the quasistatic solution, 

9, The method of analysis of statically indeterminate systems of beams or frames 
with time delay based on the theorem formulated is as follows. With the elasticity 
assumed. the static problem is solved for the initial state, the distribution of moments is 

obtained, the functional (1.6) constructed and the cross section A at which the first plas- 

tic hinge, corresponding to the time t, is formed, is found. 
Next we consider the same system but with one plastic hinge at which the bending 

moment has a constant value M, . The position of the second plastic hinge is found and 

the time of its formation, The process is continued until the formation of the next plas- 
tic hinge converts the system into a mechanism. In the stages that follow, the bending 

moments in the rigid segments are determined from the equations of motion of a system 

of rigid members linked by hinges. Condition (1.6) serves to determine the positions and 
times of appearance of successive hinges, During the analysis attention must be paid to 
the relative direction of rotation of the neighboring members as the formation of one 
hinge may lead to the disappearance of other hinges. A similar method of analysis for 

statically determinate systems is given in [4]. 
If the velocities of certain cross sections are given instead of the loads, the yield delay 

effect can be neglected and the conventional rigid-plastic solution remains valid. 
We shall explain this using a problem investigated in [8]. A beam falls with a velocity 

v onto hinge supports. Thus at t = 0 the velocities of all cross sections of the beam 
except the end ones are equal to 0, while the end ones are zero. The beam stops instan- 
taneously, hence an infinitely large transverse load q = pi) appears, whose impulse qT = 

= gPv is however finite. The bending moment M is infinite at every cross section. 
Writing the condition of delay for an infinitely short time T 
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we find that M”T = 00 when n > I, from which it follows that the capacity of the 

material for delay will be exhausted and the value M = M, is attained at once along 

the whole beam, which is precisely the assumption made in the solution given in 183. 
The problem of axially symmetric bending of a circular plate may be used as an exam- 

ple of application of the rigid-plastic analysis of a statically indeterminate system. As 
was said before, the possibility of plastic deformations appearing in the plate is governed 
by the state of stress in the rigid parts. Plastic deformations will only appear when (1.6) 

holds. The following scheme of the rigid-plastic solution is obtained in this case. First 
the static elastic problem must be solved and the distribution of moments found. At this 
stage a circle can be found within which the load-bearing capacity of the material will 

be first exhausted. The values of the bending moments will fall on this circle to their 
limiting values, the latter depending on the conditions of plasticity chosen. Further, the 
zones of plastic deformation are distributed in accordance with (1.6) in which the value 

of the equivabnt moment appearing under the integral sign is found from the static elas- 

tic solution for the rigid part of the plate. The quantity M appearing in the expression 
for cp represents, in accordance with (1.5). the value of some equivalent moment corre- 

sponding to the chosen condition of plasticity. 

The usual rigid-plastic analysis of bending of circular plates is based, as a rule, on the 

Tresca condition of plasticity. For this reason the latter condition (Fig. 2) has been assumed 

MY 1 6’ AI 

Fig. 2 

in the present paper in the investigation of bending 

with the yield lag. After determining the radial M, 
and tangential M, moments in the rigid plate, it 

must be shown at which part of the M, - n/i, 

plane they wiIl fall. If M, and MV, have the same 

sign (sides A’B’, A’F’, C’D’, D’E’), the equiva- 
lent moment M will correspond to this &f, or M, 
which is numerically larger. If on the other hand 

M, and Mp have opposite signs, then the value of 
fif will correspond to the difference of these mo- 
ments, which define the sides B’C’ or E’J” of the 

hexagon. At the instant t = t, the bending mo- 

ments fall to their limiting values corresponding to 
theTresca hexagon ABCDEF, in which the velocities are given by the limiting values 
of the moments M,. Deformation takes place in the plastic region in accordance with 
the rule of flow corresponding to the limiting hexagon. 

4. Let us consider the bending of a circular freely supported plate acted upon by an 
impulsive, uniformly distributed load. A similar problem without the yield lag was stu- 

died in [9]. 
We show that two different forms of bending may arise, depending on the magnitude 

of the load. When ps < p < 2p, (here ps = 6M, / R”, where R is the radius of the plate. 
denotes the limiting load), the neutral surface initially flat assumes a conical shape. At 
the center of the plate the moments M, and M, are eq-eal to each other. The plate is in 
the state AB, its center being in the state A and the freely supported edge in the state B. 
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When p > zp,, a central circle appears in which we have the state A and M, -= lWW. 
The radius of this circle can be found from the boundary conditions and from the condi- 

tion at the boundary separating the different plastic states. The whole central circle 
will be in translational motion as a rigid body, while the remainder of the plate will be 

in the state AB and will assume the shape of a truncated cone. 
On removing the load the hinge circumference separating the two regions begins to 

contract towards the center. After it has reached the center, the plate continues to move 

for some time until it comes to a complete stop. 

The presence of the delay lag causes a substantial alteration to the analysis of the 

problem. 
After the load has been applied, the plate remains stationary for some time, determined 

by the condition of delay (1.6), since during this time the material can withstand the 
stresses in excess of the limiting values. 

At the time t = t, the bending moments fall to their limit static state corresponding 
to the Tresca hexagon ABCDEF. A flow takes place in the plastic region in accord- 

ance with the associated rule and the magnitude of the equivalent moment 1lG’ appearing 

under the integral sign in (31.6) is obtained, as shown in Sect. 2, from the static elastic 

solution for the rigid part of the plate. 
Thus, after the loads have been removed, the plate remains rigid and stationary for 

qb 

Y 
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Fig. 3 

some time t < t, . Figure 3 depicts the curves 

for M&M, (curve I’) and ~$1, / Ii/l, (curve 1) 

during the first stage of motion. Clearly, M, ex- 

ceeds .u, everywhere except at the point E -7 0 
(here g = r J N) These moments will be the 

most influential ones and it is with them, that the 

onset of the plastic deformations must be associated, 

(In computing the curves on Fig. 3 we assumed that 

the Poisson% ratio v = 0.25,the applied load 

p 1 pa -& and denoted the moments referring to 
the rigid part of the plate by the subscript 1). The 

load capacity of the material is first exhausted at 

the center where the bending moment is largest. 
A decrease in the value of the moments then takes 

place, from the upper yield point determined by the applied load, to the lower yield 

point determined by the limiting stress. The values of the moments at the center E =O 

correspond to the point A on the yield hexagon. The plastic region then begins to expand 

gradualiy towards the plate edge, with the velociq determined by the length of delay 
at each cross section E, i, e. by the quantity t(E)_ At the same time the point on the 
yield hexagon begins to move from A towards B. Since on the side .4B we have 

X = d%~ / dr”dt = i) (w denotes deflection) while on the boundary separating the 
plastic and rigid regions the relations h == - $!r,&u / & dt := 0, r_~, = tJ and 
w‘ = 0 must hold, we find that w :-= 10 _- w =- i) everywhere in the plastic region. 
This means that although the center of the plate becomes plastic, no motion is observed 
at this stage of loading, Here M, = I%!,, and U < fIf, 4 M,. Integrating the equa- 
tions of motion at this stage yields the following expression for M, : 
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The subscript 2 accompanying &f, indicates that the moment pertains to the region 
AB, and we see from the above expression that A B cannot embrace the whole plate. 
When it reaches the circumference denoted by g* at which Mr2 becomes equal to zero 

(g* = Ifi / &), the character of the motion must change. Thus the plate remains sta- 

tionary until the region of plasticity reaches 5 = E’. 

Figure 3 gives the graphs for the moments &f,,(g) / Al, in the case when the load 

applied is four times as large as the limiting load, for various boundaries of propagation 

of the plastic region (curves 2 - 4 correspond to the values of p = 0.2, 0.4, 0.5 
respectively). 

When the plastic zone reaches the circumference whose coordinate is E*, another pias- 
tic region begins to spread from the center of the plate and the stress in this region cor- 

responds to the point A of the yield hexagon, i.e. M, = &IV = M,. This marks the 

third stage of motion. Let us denote by p0 the boundary between the two plastic regions, 

For the values 0 < 5 & p0 of the radius we have M, = M, = M, . Equations of 
equilibrium imply at once that the shearing force Q = 0 and w” = 0. For the region 

p. < E < p we have M, = AI, and 0 < M, < M, and, as was shown before, 
in this region la = uf’ = w” = 0. When integrating the equations of motion, we must 

take into account the fact that 

Two of these conditions yield two constants of integration, while the third one gives 

the relation connecting p and po. We obtain 

p I k - p3 + 3 pp*2 - 2 pOs = ct 

This cubic equation expresses the relationship between the boundaries of propagation 
of the two plastic regions. 

In the central part of the plate (0 ,( g -< po) the radial and tangential bending 

moments are equal to each other, and to the critical moment. The equations of dyna- 

mic equilibrium imply at once that the deflections in this region are under constant 

acceleration and are different from zero 

w3 -* = p I ??a 

(the subscript 3 means that the accompanied quantity belongs to the region A). Integra- 

ting this expression and employing the boundary conditions w 1 kEPn = u and 
dw!dt 1 e = p0 = 0, we obtain 

w3 = -?$- [t (PII) - t (91” (4.1) 

In the region p0 & E & p (plastic state corresponds to the side A B of the yield 
hexagon) and in the rigid part p & 5 2( 1 the deflections are identically zero. 

Figure 3 depicts the curves for the bending moments M,l in the rigid part of the 

plate at this stage of motion, curves 5 and 6 corresponding to the values p === 0.6 and 

0.8. 
Motion of the boundary between the regid and the plastic region, i.e. the function 

p(t) is determined by the condition of delay. Here it must be remembered that the 
time of delay at each point E is determined by the previous history of the state of stress 

at this point, In accordance with (1.5) and (1.6) we obtain the following equation: 



8 111. N. Rabotnov and Iu. V. Suvorova 

Here t, denotes the time of delay for the central point E -: 0 of.the plate at which 
the bending moment is equal to M,% (0,O). The first integral describes the contribu- 
tion of Mp, corresponding to the stage of motion during which the whole plate is rigid 

and plastic regions are absent. The integrand function depends only on the magnitude 

of the applied load and the latter determines both, the value of M,, for some circum- 

ference with coordinate 5, and the time of delay t, at the center where E =- 0. The 
second integral can be transformed as follows. Challging the variable of integration from 

t to p (dt := t, dp) we obtain _ 

Equation (4.2) now transforms into the integral Volterra equation of the first kind 

4 1 

cc 

&$I (49 P) 

to, 
0 

Ms 

We shall first show that t, = 0 at the center E = c. To do this we must assume 
that p --+ 0 and E + 0 in the expression for the moments Mql(E, p). Expanding the 
terms entering (4.2) in small values of g and assuming that t’ = a $- bE”, we easily 

obtain a = 0 and M. = 1. Thus t’ = bE at small g , i. e. if E = 0 we also have 

t’ = 0. 
The integral equation (4’. 3) can be easily solved on a digital computer for any mate- 

rial characteristics, i. e. for any values of n. However, to illustrate the analysis performed 

above we shall use the following approximate method which presents no great difficulties 

when n have integral values (we shall use n = 1 for simplicity). We approximate the 

functions M,, (4, p) writing polynomials in p for each 4 and represent t’ also in the 

form of the following polynomials S 

t’ = alp + a,[? + . . .+a$ = 2 a$ (4.4) 

i:l 

We now insert (4.4) into (4.3) and assume that it holds for 4 = & (i = 1. 2, . . ., s). 
This yields a system of linear algebraic equations defining the coefficients ai. Graphical 
integration of t’ (4) yields the function t (4) itself, and the latter is shown in Fig. 4. 

(The values of n = 1 and s = 5 were used for the purpose of integration). We see that 
for the load chosen (k = 4) the time in which the plastic region expands from the center 
to the plate edge is very short and equal to only 0.47 t,. At the instant t, = 1.47 t, the 
whole plate becomes plastic, the state A in which the deflections are given by (4.1) 

prevailing in the region 0 Q E < pO* = 0.67 and state ABin which the deflections are 

identically zero, in the remaining part of the plate. Figure 4 also shows the form of 
deflections in the plate at the instant when the plastic region reaches the freely supported 
edge and the whole plate becomes plastic, the nondimensional quantity W = wn / ptez 
plotted on the ordinate axis. After the whole plate has become plastic, its motion becomes 
identical to that without the yield lag. Only the initial conditions of the problems are 
different. 

In the present paper we consider the case when the load applied to the plate acts upon 

it only for a short period and is then removed. If we find that the duration of the appli- 
cation of the ioad affects the influence of the yield lag on the magnitude of the residual 
deflections in a varying manner. If the duration t, of the impulse is SO short that the 
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plastic deformation had not yet time to appear (capacity of the material for delay is 
not exhausted at any point 0 < ts < 2s) or if the plate is in that stage of loading 
during which the plastic region AR is expanding but the deflections are still identically 

zero (to 4 ts < ti = 1.07 to), then upon the removal of load the plate reverts to 
the rigid state at once and the moments become equal to zero everywhere. 

When the load is removed at the instant t3 

such that two zones, plastic and rigid are pre- 

sent (I.07 t, < f, < 1.47 to) then we have 

Fig. 4 Fig. 5 

the case of bending of a plate with deflections and rates of deflections given at some 
part of the plate (0 < 4 .< I+,) at the initial instant. This case however is unimportant 

from the practical point of view, as the time of propagation of the plastic zone is very 

short (0.40t,) and it is fairly difficult to remove the load precisely during this interval. 
The case when the removal of load takes place when the whole plate is in the plastic 

state appears to be the most important one. The analysis of its motion follows that of 

the problem without the yield lag. Figure 5 shows the form of the final deflection in 

the problems with (curve 2) and without (curve Ij the yield lag. (Here the duration of 

the load is t, = 20 to). In the problem without the yield lag the total time of motion up 

to the complete stop (with t, = 20to) is T = Sot,, while with yield lag taken into 

account it becomes T = 74.i~~. 
From Fig. 5 we can see that taking yield lag into account leads to a decrease in the 

residual deflections. This decrease is associated with the first two stages of motion char- 
acterized by the complete absence of any deflections. In the first of these stages the 
carrying capacity of the plate is nowhere exhausted and the whole plate is still in the 

rigid state, while the second stage corresponds to the propagation of the plastic region 

AB and is also characterized by the absence of deflections. The form of the plate itself 
will also be different in these two problems. In the problem without yield lag the meri- 

dian of the plate is curved when 0 ,( E < p* where p* is the coordinate at which a 

stationary hinge circle is formed in the loaded plate. By [9] this coordinate is given by 

the condition 

(1 - p”)“(l -+ p”) == 2 / k 

When t > p *, the meridian is rectilinear and its inclination to the point E = i’ is 
not zero. Moreover it becomes discontinuous at E = p* . In the case with yield lag 
the meridian is curved when 0 < 5 & po* (porn = po(ta) where t, = 1.47t, and 
corresponds to the instant at which the plastic region reaches the plate edge) and there 
is no discontinuity in the slope at the point ?$ =- pa*. A discontinuity will however 
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appear at the point j :- 6,’ corresponding to the previous case. 
The deflections developed by the time during which the plastic region has spread over 

the whole plate and reached its edge are extremely small, therefore the discrepancy in 
the form of the meridian becomes significant only when the times of action of the im- 

pulse become comparable with the time of delay at the plastic center 5 - 0. 
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